PC algorithm for nonparanormal graphical models
نویسندگان
چکیده
The PC algorithm uses conditional independence tests for model selection in graphical modeling with acyclic directed graphs. In Gaussian models, tests of conditional independence are typically based on Pearson correlations, and high-dimensional consistency results have been obtained for the PC algorithm in this setting. Analyzing the error propagation from marginal to partial correlations, we prove that high-dimensional consistency carries over to a broader class of Gaussian copula or nonparanormal models when using rank-based measures of correlation. For graph sequences with bounded degree, our consistency result is as strong as prior Gaussian results. In simulations, the ‘Rank PC’ algorithm works as well as the ‘Pearson PC’ algorithm for normal data and considerably better for non-normal data, all the while incurring a negligible increase of computation time. While our interest is in the PC algorithm, the presented analysis of error propagation could be applied to other algorithms that test the vanishing of low-order partial correlations.
منابع مشابه
Effects of Nonparanormal Transform on PC and GES Search Accuracies
Liu, et al., 2009 developed a transformation of a class of non-‐Gaussian univariate distributions into Gaussian distributions. Liu and collaborators (2012) subsequently applied the transform to search for graphical causal models for a number of empirical data sets. To our knowledge, there has been no published investigation by simulation of the conditions under which the transform BLOCKIN BLOC...
متن کاملLocal and Global Inference for High Dimensional Nonparanormal Graphical Models
This paper proposes a unified framework to quantify local and global inferential uncertainty for high dimensional nonparanormal graphical models. In particular, we consider the problems of testing the presence of a single edge and constructing a uniform confidence subgraph. Due to the presence of unknown marginal transformations, we propose a pseudo likelihood based inferential approach. In sha...
متن کاملHigh Dimensional Semiparametric Gaussian Copula Graphical Models
In this paper, we propose a semiparametric approach, named nonparanormal skeptic, for efficiently and robustly estimating high dimensional undirected graphical models. To achieve modeling flexibility, we consider Gaussian Copula graphical models (or the nonparanormal) as proposed by Liu et al. (2009). To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient ...
متن کاملSmooth-projected Neighborhood Pursuit for High-dimensional Nonparanormal Graph Estimation
We introduce a new learning algorithm, named smooth-projected neighborhood pursuit, for estimating high dimensional undirected graphs. In particularly, we focus on the nonparanormal graphical model and provide theoretical guarantees for graph estimation consistency. In addition to new computational and theoretical analysis, we also provide an alternative view to analyze the tradeoff between com...
متن کاملBlossom Tree Graphical Models
We combine the ideas behind trees and Gaussian graphical models to form a new nonparametric family of graphical models. Our approach is to attach nonparanormal “blossoms”, with arbitrary graphs, to a collection of nonparametric trees. The tree edges are chosen to connect variables that most violate joint Gaussianity. The non-tree edges are partitioned into disjoint groups, and assigned to tree ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2013